An integrating factor for the differential equation
1+x2)dx−(tan−1y−x)dy=0
[MP PET 1993]
(1+y2)dx−(tan−1y−x)dy=0⇒dydx=1+y2tan−1y−x⇒dxdy=tan−1y1+y2−y1+y2⇒dxdy+x1+y2=tan−1y1+y2
This is equation of the form dxdy+px=Q
So, I.F. =e∫ p dy=e∫11+y2dy=etan1y