wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

An isosceles ABC is inscribed in a circle. If AB=AC=125cm and BC=24cm, then the radius of the circle is:

A
12cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
24cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
15cm
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
18cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 15cm
GivenOisthecentreofacirclewhichhastwochordsAB=AC=125cm.ThelengthofthechordBC=24cm.TofindoutTheradiusofthecircle=?SolutionInΔABCAB=AC=125cm..ΔABCisanisoscelesonewithBCasbase.ConstructionThebisectorofBACisdrawnanditintersectsBCatD.Nowthebisectoroftheanglebetweentheequalsidesofanisoscelestriangleistheperpendicularbisectorofthebase.ADBCBD=DC=12BC=12×24cm=12cm.......(i).AlsoADB=ADC=909.Butweknowthattheperpendicular,droppedfromthecenterofacircletoitsanychordbisectsthelatter.OliesonAD.i.e¯¯¯¯¯¯¯¯¯¯¯¯¯AODisastraightline.WejoinOC.OCisaradiusofthegivencircle.SoOC=OA=r(say)NowΔADCisarightonewithACashypotenuse.So,byPythagorastheorem,wehaveAD=AC2DC2=(125)2122cm=24cm.OD=ADr=24r........(ii)NowODCisarightonewithACashypotenuseasODC=909(fromi).So,byPythagorastheorem,wehaveOD2+DC2=OC2(24r)2+122=r2r=15cm.Theradiusofthecircle=15cmAnsOptionC.
299827_243350_ans.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Let's Build Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon