wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of the triangle is maximum when θ = π6.
[NCERT EXEMPLAR]

Open in App
Solution



Let ABC be an isosceles triangle inscribed in the circle with radius a such that AB = AC.

AD=AO+OD=a+acos2θ=a1+cos2θandBC=2BD=2asin2θAs, area of the triangle AC, A=12BC×ADAθ=12×2asin2θ×a1+cos2θ=a2sin2θ1+cos2θ=a2sin2θ+a2sin2θcos2θAθ=a2sin2θ+a2sin4θ2A'θ=2a2cos2θ+4a2cos4θ2A'θ=2a2cos2θ+2a2cos4θA'θ=2a2cos2θ+cos4θFor maxima or minima, A'θ=02a2cos2θ+cos4θ=0cos2θ+cos4θ=0cos2θ=-cos4θcos2θ=cosπ-4θ2θ=π-4θ6θ=πθ=π6Also, A''θ=2a2-sin2θ-sin4θ=-2a2sin2θ+sin4θ<0 at θ=π6.So, the area of the triangle is maximum at θ=π6.

flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Line from Vertex divides length of opposite sides and area
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon