An object is placed at some distance in front of a concave mirror of focal length 10cm. The image is formed on the same side, but 10cm farther from the mirror than the object is. Find out the magnification of the mirror.
-1.618
Open in App
Solution
The correct option is A -1.618 Given: Focal length of the mirror, f=10cm The image distance is 10 more than the object distance. i.e. if u is the object distance, then the image distance v=u+10. Using the mirror formula, 1f=1u+1v along with the sign convention, −110=−1u−1(u+10) ⟹110=1u+1(u+10) ⟹110=2u+10u2+10u ⟹u2+10u=20u+100 ⟹u2−10u−100=0 On solving the quadratic equation, the roots are 10±10√52=5±5√5. The possible object distances are u1=5+5√5=16.18cm and u2=5−5√5=−6.18cm Since, the image distance is greater than the object distance, the object must be placed somewhere between the centre of curvature and the Focus, i.e. R>u>f, where R is the radius of curvature. 20>16.18>10 So, 16.18cm is the correct object distance to be chosen. ∴v=u+10=26.18cm Magnification of a concave mirror, m=−vu=−26.1816.18=−1.618