The correct option is D y=x
If y=mx+c is an oblique asymptote to the curve y=f(x), then x→+∞ or x→−∞ we have
m=limx→−∞(yx)=limx→−∞x+e−xsinxx=limx→−∞(1+e−xsinxx)=1
and c=limx→∞(y−mx)=limx→∞(x+e−xsinx−x)=limx→∞e−xsinx=0
∴ Oblique asymptote is y=mx+c i.e. y=x (∵c=0)