An observer at an altitude of 250 m observes the angle of depression of two boats on the opposite banks of a river to be 45∘ and 60∘ respectively. Find the width of the river. Write the answer correct to the nearest whole number. [3 MARKS]
In ΔOMA
tan 45∘=OMAM
I=250x {∵tan 45∘=1}
⇒x=250 m
In ΔOMB, tan 60∘=250y
⇒√3=250y⇒y=250√3=2501.73
y=144.34
∴ Width of river = x + y = 250 + 144.34
= 394.34 m
In Δ ABC [12 MARK]
tan 60=240x
√3x=240
x=240√3……(1) [1 MARK]
In Δ ABD
tan 45=240y
1=240y
y=240 [1 MARK]
Width of river =240−80√3
=80(3−√3)
=101.44
=101 m [12 MARK]