Let x metre be the length of a side of the removed square
Length of the box=8−x−x=8−2x
Width of the box =3−x−x=3−2x
Height of the box =x
Now, the volume
V=(8−2x)(3−2x)(x)
⇒V=2x(x−4)(2x−3)
⇒V=2x(2x2−11x+12)
⇒V=2(2x3−11x2+12x)
Differentating w.r.t x,
dVdx=2(6x2−22x+12)
⇒dVdx=4(3x2−11x+6)
⇒dVdx=4(3x2−9x−2x+6)
⇒dVdx=4(x−3)(3x−2)
Substituing dVdx=0,
4(x−3)(3x−2)=0
⇒x=23,3
When x=3, then
Width=3−2x=−3
Which is not possible, so x=23
Again, Differentating w.r.t x
d2Vdx2=2(12x−22)
Substituting x=23,
d2Vdx2=2(12(23)−22)
⇒d2Vdx2=2(8−22)=−28<0
So, x=23 is a point of maxima.
Therefore, the maximum volume is
⇒V=2(2x3−11x2+12x)
V=2x(x−4)(2x−3)
⇒V=43(23−4)(43−3)
⇒V=43(−103)(−53)=20027 m3
Hence, volume of largest box is 20027 m3