Angle between tangents drawn to x2+y2−2x−4y+1=0 at the points where it is cut by the line y=2x+c is π2, then
A
|c|=√5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
|c|=2√5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
|c|=√10
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
|c|=2√10
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D|c|=2√10 ABisy=2x+cEquationofchordofcontactABfromp(h,k)is:⇒T=S,⇒x(h)+y(k)−(x+h)−2(y+k)+1=h2+k2−2h−4k+1⇒x(h−1)+y(k−2)+(−h2+h+2k−k2)=0⇒y=x(1−h)k−2+(h2+k2−h−2k)k−2Comparingwithy+2x+c.⇒1−hk−2=2⇒1−h=2k−4.⇒2k+h=5→(1).andh2+k2−(h+2k)k−2=c⇒h2+k−5k−2=c→(2).In△PAM&PMB:⇒PA=PB(Tangentfromsameexternalpoint)⇒PM=PM(Common)∠PMA=∠PMB=900∴△PAM≅△PMB∴∠APM=∠MPB=450In△OAP:⇒sin45=OAOP⇒1√2=rOPr=√1+4−1=2.⇒1√2=2√(h−1)2+(k−2)2⇒(h−1)2+(k−2)2=8andh=5−2k→from(1)⇒(4−2k)2+(k−2)2=8⇒4(k−2)2+(k−2)2=8⇒5(k−2)2=8⇒k−2±2√2√5.⇒k−2=±2√25.⇒k=2±2√25.h=5−2k=5−(4±4√25).=1∓4√25.Puttingin(2):⇒C=[1+16(25)±8√25+(4+4(25)±8√25)−5]±2√25C=1+32∓8√25+4+85±8√25−5±2√25=−4+4+82√25=4√52=4√102=2√10.Ans.