The correct option is C tan−12√2
y=sinx y=cosx
⇒m1=cosx ⇒m2=−sinx
∴y=sinx;y=cosx
⇒sinx=cosx
⇒tanx=1
⇒x=π4;y=1√2
The point of intersection (π4,1√2)
⇒m1=1√2,m2=−1√2
⇒tanθ=⎛⎜
⎜
⎜
⎜⎝1√2+1√21−12⎞⎟
⎟
⎟
⎟⎠
⇒θ=tan−1(2√2×21)
⇒θ=tan−1(2√2)
Hence, option 'C' is correct.