The correct option is C tan−147
x2y=1−y……(1)
x3=2(1−y)……(2)
From (1) and (2), we have -
x3=2x2y
⇒x=0, x=2y
From (1) and (2)
When x=0, y=1
When x=2y⇒x2×x2=1−x2
⇒x3=2−x⇒x3+x−2=0
⇒(x−1)(x2+x+2)=0
∴x=1⇒y=12
∴ Points of intersection are (0,1) and (1,12)
Angle between the curves = Angle between the tangents at the point of intersection
x2y=1−yx3=2(1−y)DifferentiatingDifferentiatingx2y′+y(2x)=−y′3x2=−2y′⇒y′=−2xy(1+x2)⇒y′=−32x2At (0, 1) m=0At (0, 1) m=0
At (0,1) m1=0 m2=0⇒θ=0
At (1,12) m1=−2×122=−12 m2=−32
tan θ=∣∣∣m1−m21+m1m2∣∣∣
θ=tan−1⎛⎜
⎜
⎜
⎜⎝−12+321+(−12)(−32)⎞⎟
⎟
⎟
⎟⎠=tan−1(47)