Angle between the pair of lines x−21=y−15=z+3−3 and x+1−1=y−48=z−54
Let a1 and a2 be the vectors parallel to the pair of lines.
Given lines are
x−21=y−15=z+3−3 and x+1−1=y−48=z−54
∴→a1=1ˆi+5ˆj−3ˆk and ∴→a2=−1ˆi+8ˆj+4ˆk
Then,
→a1.→a2=(1ˆi+5ˆj−3ˆk).(−1ˆi+8ˆj+4ˆk)
→a1.→a2=1×(−1)+5×8+(−3)×4
→a1.→a2=−1+40−12
→a1.→a2=27
Now, −−→|a1|=√12+52+(−3)2 and −−→|a2|=√(−1)2+82+42
−−→|a1|=√1+25+9
−−→|a1|=√35
−−→|a2|=√1+64+16
−−→|a2|=√81
−−→|a2|=9
Let angle θ between the given pair of lines
cosθ=∣∣ ∣ ∣∣→a1.→a2∣∣→a1∣∣.∣∣→a2∣∣∣∣ ∣ ∣∣
⇒cosθ=279√35
⇒cosθ=3√35
⇒θ=cos−13√35
Hence, it is complete solution.