Angle made by the line xcos30o+ysin30o+5=0, with the positive X−axis, is :
Given that.
xCos300+ySin300+5=0
⇒ySin300=−xCos300−5
⇒y=−xCos300Sin300−5Sin300
⇒y=−x Cot300−5Cosec300
On Comparing that.
⇒y=mx+c
m=−Cot300
m=Cot(1800−300) ∴ Cot(1800−A)=−CotA
m=Cot 1500m=tan(2700−1200)
We know that
m = tanθ=tan1200
θ=1200
θ=120×π180
θ=2π3
Hence, this is the answer