The correct option is D 25o
Given−PA&PBaretwotangentstoacirclewithcentreOatA&Brespectively.∠APB=50o.Tofindout−∠OAB=?.Solution−wejoinOA&OB.ThenOA&OBareradiithroughthepointsofcontactA&Bwiththetangenttothegivencircle.∴OA⊥PA&OB⊥PB.i.e∠OAP=90o=∠OBP.∴∠OAP+∠OBP=90o+90o=180o.∴∠AOB+∠APB=360o−(∠OAP+∠OBP)=360o−180o=180o.∴∠AOB=180o−∠APB=180o−50o=130o.NowinΔOABOA=OB(radiiofthesamecircle).So∠OAB=∠OBAi.e∠OAB+∠OBA=2∠OAB.∴∠AOB+2∠OAB=180o(anglesumpropertyoftriangles.)⟹∠OAB=12×(180o−∠AOB)=12×(180o−130o)=25o.Ans−OptionA.