Angles A,B and C of a triangle ABC are in A.P. If bc=√32, then ∠A is equal to
As the angles are in A.P., so, let
∠A=x−d,∠B=x,∠C=x+d
Since the sum of the angles of a triangle is 180∘, so,
x−d+x+x+d=180∘
x=60∘
∠B=60∘
By sine law,
bsinB=csinC
sinBsinC=bc
sin60∘sinC=√32
√32sinC=√3√2
sinC=1√2
sinC=sin45∘
C=45∘
∠A=180∘−(∠B+∠C)
∠A=180∘−(60∘+45∘)
∠A=75∘