The correct option is B (II),(Q),(T)
f(x)=0⇒sin(πcosx)=0
πcosx=n1π, n1∈I
cosx=−1, cosx=0, cosx=1
x=n2π2, n2∈I
⇒X={π2,π,3π2,2π,.....}
f′(x)=0⇒−cos(πcosx)πsinx=0
sinx=0 or cos(πcosx)=0
x=n3π or πcosx=(2n4+1)π2
cosx=−12,12
x=n5π±π3
Y={π3,2π3,3π3,......}
Hence, set Y elements are in arithmetic progression.