wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Answer the following questions:

(a) Time period of a particle in SHM depends on the force constant k and mass m of the particle:

. A simple pendulum executes SHM approximately. Why then is the time period of a pendulum independent of the mass of the pendulum?

(b) The motion of a simple pendulum is approximately simple harmonic for small angle oscillations. For larger angles of oscillation, a more involved analysis shows that T is greater than. Think of a qualitative argument to appreciate this result.

(c) A man with a wristwatch on his hand falls from the top of a tower. Does the watch give correct time during the free fall?

(d) What is the frequency of oscillation of a simple pendulum mounted in a cabinthat is freely falling under gravity?

Open in App
Solution

(a) The time period of a simple pendulum,

For a simple pendulum, k is expressed in terms of mass m, as:

k m

= Constant

Hence, the time period T, of a simple pendulum is independent of the mass of the bob.

(b) In the case of a simple pendulum, the restoring force acting on the bob of the pendulum is given as:

F = –mg sinθ

Where,

F = Restoring force

m = Mass of the bob

g = Acceleration due to gravity

θ = Angle of displacement

For small θ, sinθ

For large θ, sinθ is greater than θ.

This decreases the effective value of g.

Hence, the time period increases as:

Where, l is the length of the simple pendulum

(c) The time shown by the wristwatch of a man falling from the top of a tower is not affected by the fall. Since a wristwatch does not work on the principle of a simple pendulum, it is not affected by the acceleration due to gravity during free fall. Its working depends on spring action.

(d) When a simple pendulum mounted in a cabin falls freely under gravity, its acceleration is zero. Hence the frequency of oscillation of this simple pendulum is zero.


flag
Suggest Corrections
thumbs-up
3
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Simple Pendulum
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon