We have,
y2=4x
A is vertex. So, the coordinates of A is (0,0).
Let coordinates of point P be P(t2,2t).
Slope of AP=2t−0t2−0=2t
Now, AP⊥BP. So,
Slope of BP=−t2
Therefore, equation of BP,
y−2t=−t2(x−t2)
For point B, y=0. So,
−2t=−t2(x−t2)
x−t2=4
⇒x=t2+4
So, the coordinates of B are (t2+4,0).
Let coordinates of the centroid be (h,k).
⇒h=0+t2+t2+43 and k=0+2t+03
3h=2t2+4 and t=3k2
Substitute t=3k2 in the expression for h.
3h=2(3k2)2+4
3h=9k22+4
6h=9k2+8
9k2=2(3h−4)
Substitute (x,y) for (h,k).
⇒9y2=2(3x−4)
Hence, this is the required locus.