Appropriately matching the information given in the three columns of the following table.
Column 1Column 2Column 3(I)If a, b, c ϵR−{0} such that a≠b≠cand 1a+1b+1c=0 and A=⎡⎢⎣1+a1111+b1111+c⎤⎥⎦,then(i)A is singular matrix(P)|adj A|=|A|2(II)If α, β, γ ϵ R, andA=⎡⎢⎣1cos(α−β)cos(α−γ)cos(β−α)1cos(β−γ)cos(γ−α)cos(γ−β)1⎤⎥⎦,then(ii)A is singular matrix(Q)adj(adj A)=|A|A(III)If ω≠1 be cube root of unity and(iii)A is non-singular matrix(R)|A| is equal toA=⎡⎢⎣1+2ω100+ω200ω2111+ω101+2ω202ωωω22+ω100+2ω200⎤⎥⎦is equal to minimum value of,thencos−1(x−1x)+cos−1(y2y+1)+cos−1(z2+z+1)(where x, y, z are real numbers)(IV)If a, b, c ϵR−{0} such that a≠b≠c,andA=⎡⎢ ⎢⎣0(a−b)3(a−c)3(b−a)30(b−c)3(c−a)3(c−b)30⎤⎥ ⎥⎦,then(iv)Invertible(S)|A−1|=1|A|
Which of the following is only correct combination?
(I)(iii)(P)
(I)Δ=abc∣∣ ∣ ∣ ∣∣1a+11b1c1a1b+11c1a1b1c+1∣∣ ∣ ∣ ∣∣=(1a+1b+1c+1)abc∣∣ ∣ ∣ ∣∣11b1c11b+11c11b1c+1∣∣ ∣ ∣ ∣∣=abc≠0
∴ Non-singular, so invertible
Also it is symmetric
(II) ⎡⎢⎣1cos(α−β)cos(α−γ)cos(β−α)1cos(β−γ)cos(γ−α)cos(γ−β)1⎤⎥⎦=∣∣ ∣∣cos αsin α0cos βsin β0cos γsin γ0∣∣ ∣∣∣∣ ∣∣cos αcos βcos γsin αsin βsin γ000∣∣ ∣∣
(III) ⎡⎢⎣1+2ω100+ω200ω2111+w101+2ω202ωωω22+ω100+2ω200⎤⎥⎦=∣∣ ∣ ∣∣ωω211ωωωω2−ω∣∣ ∣ ∣∣=∣∣ ∣∣001+ω1ωωωω2−ω∣∣ ∣∣=(1+ω)×0=0
∴ Singular
(IV) This is a skew - symmetric matrix of odd order
⇒ singular.