wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Appropriately matching the information given in the three columns of the following table.

Column 1Column 2Column 3(I)If a, b, c ϵR{0} such that abcand 1a+1b+1c=0 and A=1+a1111+b1111+c,then(i)A is singular matrix(P)|adj A|=|A|2(II)If α, β, γ ϵ R, andA=1cos(αβ)cos(αγ)cos(βα)1cos(βγ)cos(γα)cos(γβ)1,then(ii)A is singular matrix(Q)adj(adj A)=|A|A(III)If ω1 be cube root of unity and(iii)A is non-singular matrix(R)|A| is equal toA=1+2ω100+ω200ω2111+ω101+2ω202ωωω22+ω100+2ω200is equal to minimum value of,thencos1(x1x)+cos1(y2y+1)+cos1(z2+z+1)(where x, y, z are real numbers)(IV)If a, b, c ϵR{0} such that abc,andA=⎢ ⎢0(ab)3(ac)3(ba)30(bc)3(ca)3(cb)30⎥ ⎥,then(iv)Invertible(S)|A1|=1|A|

Which of the following is only incorrect combination ?


A

(I)(iv)(P)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

(II)(i)(R)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

(III)(ii)(R)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

(IV)(iii)(Q)

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D

(IV)(iii)(Q)


(I)Δ=abc∣ ∣ ∣ ∣1a+1 1b 1c1a 1b+1 1c1a 1b 1c+1∣ ∣ ∣ ∣=(1a+1b+1c+1)abc∣ ∣ ∣ ∣1 1b 1c1 1b+1 1c1 1b 1c+1∣ ∣ ∣ ∣=abc0

Non-singular, so invertible

Also it is symmetric

(II) 1 cos(αβ) cos(αγ)cos(βα) 1 cos(βγ)cos(γα) cos(γβ) 1=∣ ∣cos α sin α 0cos β sin β 0cos γ sin γ 0∣ ∣∣ ∣cos α cos β cos γsin α sin β sin γ0 0 0∣ ∣

(III) 1+2ω100+ω200 ω2 11 1+w101+2ω202 ωω ω2 2+ω100+2ω200=∣ ∣ ∣ω ω2 11 ω ωω ω2 ω∣ ∣ ∣=∣ ∣0 0 1+ω1 ω ωω ω2 ω∣ ∣=(1+ω)×0=0 Singuler

(IV) This is a skew - symmetric matrix of odd order

singular.


flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Symmetric Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon