arctanx(a²-x²)=?
Here the basic trigonometric function of Sinθ=y can be changed to θ=sin-1y
Let x=asinθ
⇒θ=sin-1xa
Now, Using trigonometric identity we get
tan-1xa2-x2=tan-1asinθ(a²-asinθ2=tan-1asinθ(a²-a2sin2θ=tan-1asinθa2(1-sin2θ)=tan-1asinθacosθ=tan-1(tanθ)=θ=sin-1xa
Thus, tan-1x(a²-x²)=sin-1xa
Prove that :
(i) (xaxb)1ab(xbxc)1bc(xcxa)1ca=1(ii) 11+xa−b+11+xb−a=1