Are the points A(3, 6, 9), B(10, 20, 30) and C(25, -41, 5), the vertices of a right-angled triangle ?
Here, A(3, 6, 9), B(10, 20, 30) and C(25, -41, 5) are vertices of
△ABC
AB=√(10−3)2+(20−6)2+(30−9)2
=√(7)2+(14)2+(21)2
=√49+196+441
=√686=7√14
BC=√(25−10)2+(−41−20)2+(5−30)2
=√(15)2+(−61)2+(−25)2
=√225+3721+625
=√4571
CA=√(3−25)2+(6−41)2+(9−5)2
=√(−22)2+(47)2+(−4)2
=√484+2209+16
=√2709=3√301
AB2+BC2=(7√14)2+(√4571)2
686 + 4571 = 5257
CA2 = 2709
∴AB2+BC2 ≠ CA2
△ABC is right angled at B if CA2=AB2+BC2+BC2 but CA2≠AB2+BC2
Hence, the points are not vertices of a right-angled triangle.