y=√9−x2 & x2+y2=6x⇒y=y=√6x−x2
⇓
x2+y2=9
Area in the common region in the both side point of intersection of circles :
x2+y2=9.... (i)
x2+y2=6x.... (ii)
from (i) & (ii)
6x=9
x=32
y=√9−x2=√9−94
=√36−94=±3√32
Firstly we are going to calculate the area above x-axis then we will multiply by 2 to get the total area.
Form (0,0) to (32,3√32) the shaded region is in circle II.
=∫3/20√6x−x2dx=∫3/20√9−9−x2+6xdx
=∫3/20√(9−(x2−6x+9))dx=∫3/20√32−(x−3)2dx
=∫−3−3/2√32−t2dt
From the special integral theorem substituting the value of t :
Substituting
x=3=t
dx=dt
Limits
−3t−3/2
=((−3)4√9−94+92sin−1(−12))−((−3)2√9−9+92sin−1(−3)3)
=−34√274+92(−π6+32×0−92×(−π2))
=−34×3√32+(−3)4π+9π4=6√3+343π2+(−9√3)8
From (32,3√32) to (3,0)
A2=∫33/2√9−x2dx as the region has in the circle I.
=∫33/2√9−x2dx=∫33/2√32−x2dx
=[x2√32−x2+322sin−1x3] : from the special integrals substituting the values of x :
(32√32−32+322sin−133)−⎛⎝34√32−(32)2+322sin−1(12)⎞⎠
=32×0+92×π2−(34√274+92(π6))
=9π4−9√38−3π4=3π2−)(−9√3)8
=12√3−6−9√38+3π
=3π−9√34
So, the total area is :
2(A1+A2)=2×(3π−9√34)=6π−9√32
Hence n is 6.