Area enclosed between the curve y2(2a−x)=x3 and the line x = 2a above x-axis is
We have,
Given that the curve,
y2(2a−x)=x3 …… (1)
Line x=2a.....(2)
From (2) to,
If x=2a then,y→∞
So,
According to given question,
I=limp→2a∫p0x√x√2a−xdx
Let put x=2asin2θ
dx=4asinθcosθdθ
So, x=pθ=sin−1(√x2a)=sin−1(√p2a)
Again let
sin−1(√p2a)=k
⇒∫p0x32√2a−xdx=∫k0(2asin2θ)32√2a−2asin2θ4asinθcosθdθ
=∫k08a2sin4θdθ
=8a2∫k0(sin2θ)2dθ
=8a2∫k0(1−cos2θ2)2dθ
=2a2∫k0(1−2cos2θ+cos22θ)dθ
=2a2∫k0(1−2cos2θ+(1−cos4θ2))dθ
=a2∫k0(3−4cos2θ−cos4θ)dθ
=a2[3θ−2sin2θ−sin4θ4]0k
=a2[3k−2sin2k−sin4k4]
As
p→2a,k→sin−1(1)=π2
⇒sin2k→0andsin4k→0
I=limp→2a∫p0x√x√2a−xdx=limk→π2a2[3k−2sin2k−sin4k4]=3πa22