Area enclosed between the curves |y|=1−x2 and x2+y2=1 is
We have,
x2+y2=1
y1=√1−x2 ……. (1)
|y|=1−x2
y=1−x2 ……. (2)
So, area of first quadrant
=∫10(y1−y2)dx
=∫10(√1−x2−(1−x2))dx
=∫10(√1−x2)dx−∫10(1−x2)dx
We know that
∫√a2−x2dx=12a√a2−x2+12a2sin−1(xa)+C
Therefore,
=[12√1−x2+12sin−1(x)]10−(x−x33)10
=[(12√1−1+12sin−1(1))−(12√1−0+12sin−1(0))]−[(1−13)−0]
=[(0+12sin−1(sinπ2))−(12+12sin−1(sin0))]−23
=π4−12−23
=π4−(3+46)
=π4−76
=3π−1412
Therefore,
Area of all quadrants
=4×(3π−1412)
=3π−143
Hence, this is the answer.