1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Range of Quadratic Expression
Area enclosed...
Question
Area enclosed by the graph of the function
y
=
ln
2
x
−
1
lying in the
4
t
h
quadrant is
A
2
e
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4
e
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2
(
e
+
1
e
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4
(
e
−
1
e
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
4
e
y
=
ln
2
x
−
1
A
=
|
∫
e
1
/
e
(
ln
2
x
−
1
)
d
x
|
∫
(
ln
2
x
−
1
)
d
x
=
(
ln
2
x
)
x
−
∫
2
ln
x
1
x
.
x
d
x
−
x
=
x
(
ln
2
x
)
−
x
−
2
[
x
ln
x
−
x
]
=
x
ln
2
x
−
x
−
2
x
ln
x
+
2
x
=
x
ln
2
x
+
x
−
2
x
l
n
x
A
=
|
[
x
ln
2
x
+
x
−
2
x
ln
x
]
e
1
/
e
|
=
|
e
−
1
e
+
e
−
1
/
e
−
2
[
e
+
1
/
e
]
|
=
+
4
/
e
Suggest Corrections
0
Similar questions
Q.
Let
f
:
R
+
→
R
be a differentiable function satisfying
f
(
x
)
=
e
+
(
1
−
x
)
ln
(
x
e
)
+
x
∫
1
f
(
t
)
d
t
∀
x
∈
R
+
. If the area enclosed by the curve
g
(
x
)
=
x
(
f
(
x
)
−
e
x
)
lying in the fourth quadrant is
A
, then the value of
A
−
2
is
Q.
If
f
(
x
)
=
e
x
+
∫
1
0
(
e
x
+
t
e
−
x
)
f
(
t
)
d
t
, then prove that
f
(
x
)
=
2
(
e
−
1
)
4
e
−
2
e
2
.
e
x
+
e
−
1
4
−
2
e
.
e
−
x
.
Q.
If
∫
2
e
5
x
+
e
4
x
−
4
e
3
x
+
4
e
2
x
+
2
e
x
(
e
2
x
+
4
)
(
e
2
x
−
1
)
2
d
x
=
tan
−
1
(
e
x
/
2
)
−
K
248
(
e
2
x
−
1
)
+
C
then K is equal to.
Q.
The area enclosed between the curves y = log
e
(x + e), x = log
e
1
y
and the x-axis is
(a) 2
(b) 1
(c) 4
(d) none of these