Area of a parallelogram, whose diagonals are 3^i+^j−2^k and ^i−3^j+4^k will be
A
14unit
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
5√3unit
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
10√3unit
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
20√3unit.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B5√3unit Given diagonals are, →AC=3^i+^j−2^k,→DB=^i−3^j+4^k therefore, →AB=→AO+→OB=→AC2+→DB2=12(3^i+^j−2^k)+12(^i−3^j+4^k)=2^i−^j+^k →AC×→AB=(3^i+^j−2^k)×(2^i−^j+^k)=−^i−7^j−5^k thus, area of a parallelogram=|→AC×→AB|=√12+72+52=√75=5√3unit