Area of a triangle whose vertices are (acosθ,bsinθ),(−asinθ,bcosθ) and (−acosθ,−bsinθ) is
A
absinθcosθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
acosθsinθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12ab
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
ab
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Cab Area of triangle is Δ=12∣∣
∣∣acosθbsinθ1−asinθbcosθ1−acosθ−bsinθ1∣∣
∣∣ Applying R2→R2−R1,R3→R3−R1 Then Δ=12∣∣
∣∣acosθbsinθ1−asinθ−acosθbcosθ−bsinθ0−2acosθ−2bsinθ0∣∣
∣∣ =12[−2bsinθ(−asinθ−acosθ)+2acosθ(bcosθ−bsinθ)] =12(2absin2θ+2absinθcosθ+2abcos2θ−2absinθcosθ) =12×2ab=ab