Question 88
Area of an isosceles triangle is 48 cm2. If the altitudes corresponding to the base of the triangle is 8 cm, find the perimeter of the triangle.
Given, area of ΔABC=48 cm2 and altitude = 8 cm
∵ΔABC is an isosceles trinagle, where AB =AC
∴ Area of ΔABC=12×BC×AD=48
[∵ area of triangle = 12×base×height]
⇒48=12×BC×AD
⇒12×BC×8=48⇒BC=48×28
BC = 12 cm
Now, in an isosceles triangle, BD = DC = 6 cm [∵AD⊥BC]
Applying Pythagoras theorem in right angled ΔADB,
AB2=BD2+AD2⇒AB2=62+82=36+64⇒AB2=100⇒AB=10 cm
Now, perimeter of triangle = AB + AC + BC = AB + AB + BC [∵AB=AC]
= 10 + 10 + 12
= 32 cm