Area of region bounded by the curve y=16−x24 and y=sec−1[−sin2x] (where [.] denotes greatest integer function) is
83(4−π)32 sq. units
0≤sin2x≤1⇒[−sin2x]=0 or −1
But sec−1(0) is not defined
⇒y=sec−1[−sin2x]=sec−1(−1)=π
Solving y=16−x24 and y=π
We get x=±2√4−π
∴ Required area =2∫2√4−π0(16−x24−π)dx=83(4−π)32 sq. units