Area of the region bounded by y=x2−3x+2, then x−axis and the ordinates x=0,x=3 is
y=x2−3x+2
y−2=x2−3x+94−94
(x−32)2=(y+14)
Area bounded =∫740ydx+∣∣ ∣ ∣∣∫5474ydx∣∣ ∣ ∣∣+∫354ydx
=∫740(x2−3x+2)dx+∣∣ ∣ ∣∣∫5474(x2−3x+2)dx∣∣ ∣ ∣∣+∫354(x2−3x+2)dx
=[x33−3x22+2x]740+∣∣ ∣ ∣∣[x33−3x22+2x]5474∣∣ ∣ ∣∣+∣∣ ∣ ∣∣[x33−3x22+2x]354∣∣ ∣ ∣∣
=(34364×3−3×492×16+72)+∣∣∣(1253×64−3×252×16+52)−(34364×3−3×492×16+72)∣∣∣+(9−272+6)−(1253×64−3×252×16+52)
=32