Area of the triangle formed by the points ((a+3) (a+4) a+3), ((a+2) (a+3),(a+2)) and ((a+1) (a+2) (a+1))
none of these
The given points are
({a+3) (a+4), (a+3)},{(a+2) (a+3), (a+2)} and {(a+1) (a+2), (a+1)}
Let A be the area of the triangle formed by these points.
Then,
A=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]
⇒ A
⇒ 12[(a+3)(a+4)(a+2−a−1)+(a+2)(a+3)(a+1−a−3)+(a+1)(a+2)(a+3−a−2)]
⇒ A=12[(a+3)(a+4)−2(a+2)(a+3)+(a+1)(a+2)]
⇒ A=12[a2+7a+12−2a2−10a−12+a2+3a+2]
⇒ A=1 [(a+3)(a+4)(a+2−a−1)+(a+2)(a+3)(a+1−a−3)+(a+1)(a+2)(a+3−a−2)]
=12[(a+3)(a+4)−2(a+2)(a+3)+(a+1)(a+2)]
=12[a2+7a+12−2a2−10a−12+a2+3a+2]
=1