Let A=z,B=izandC=z+iz
Let z=x+iy then the values of |A−B|,|B−C| and |C−A| forms an isosceles triangle with AC=BC.
It is a property of an isosceles triangle that if we join C and mid point of A and B (let mid point be P), it will be perpendicular to AB.
AREA=12×AB×PC
P= mid point of A and B=A+B2=z+iz2
Now PC=∣∣∣z+iz−z+iz2∣∣∣=∣∣∣z+iz2∣∣∣
AB=|z−iz|
Therefore area =12×|z+iz|2×|z−iz|=|z2+z2|4=|z|22