The correct option is D π2 and 1
1+i1−i=1+i1−i×1+i1+i=(1+i)22
Now 1 + i = r (cos θ + i sin θ) ⇒ r ~cos θ = 1, r sin θ = 1
⇒r=√2,θ=π/4
∴ 1+i=√2(cosπ4+i sinπ4)
⇒12(1+i)2=12.2(cosπ2+i sinπ4)2
By De Moivre's Theorem, (cosπ2+i sinπ2)
Hence the amplitude is π2 and modulus is 1.
Trick: arg(1+i1−i)=arg(1+i) −arg(1−i)
=45o−(−45o)=90o
∣∣1+i1−i∣∣=∣∣1+i1−i∣∣=√2√2=1.