Arrange the following in descending order:
A) Min.value of sin4xcos4x
A.
We know sin2x=2 sinx cosx
sin4xcos4x=sin8x2
minimum of sin8x=−1.
minimum of sin8x2=−12
B.
cos2x
We know −1≤cosx≤1
Hence minimum of cos2x=0.
C.
We know sin2x=2 sinx cosx
f(x)=1−8sin2xcos2x=1−2(sin2x)2
maximum of f(x)=1−0=1
D.
Maximum value of asinx+bcosx+c is √a2+b2+c
f(x)=√3sinx−cosx
maximum value value of f(x)=√3+1=2
So, decending order of A,B,C,D
⇒D,C,B,A.
⇒2,1,0,−12