The correct option is A b,d,a,c
Using x=π180(x0)
a)limx→0sinx0x=limx→0sinx0π180x0=180π
b)limx→03sinx0−sin3x0x3=limx→04sin3x0(π/180x0)3=4(180π)3
c)limx→0tanx02x=limx→0tanx02(π/180)x0=90π
d)limx→0(secx0+1)(secx0−1)x2=limx→0(sec2x0−1)(π/180x0)2=limx→0tan2x0(π/180x0)2=(180π)2
Hence ascending order of limits is, b,d,a,c