wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Arrange the following limits in the ascending order.
a) limx0tan4xsin4xx6
b) limx0tan8xsin8xx5tanx5
c) limx0tan3xsin3xxsin4x
d) limx0tan5xsin5xx2.sin3xtan2x

A
a,b,a,d
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
c,a,d,b
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
a,b,d,c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
b,a,c,d
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is D c,a,d,b
Consider, limx0(tanxsinx)x3
limx0sinx(1cosx)x3cosx=limx0sinxx(1cosx)x2cosx
limx0sinxx=1&limx01cosxx2=12
limx0(tanxsinx)x3=12
Using the above limit, we can evaluate the options:
(a) limx0(tan2xsin2x)(tan2x+sin2x)x6
=limx0(tanxsinx)x3(tanx+sinx)x(sin2+tan2x)x2
=12×(2)(2)=2
(b)limx0(tan4x+sin4x)(sin2x+tan2x)(tanx+sinx)(tanxsinx)x4×x2×x×x3×tan x5x5
=limx0(tan4x+sin4x)x4(sin2x+tan2x)x2(tanx+sinx)x(tan xsinx)x3
=2×2×2×12=4
(c)limx0(tanxsinx)(tan2x+sin2x+sinx tanx)x5sin4xx4
=limx0(tanxsinx)x3(tan2x+sin2x+sinx tanx)x2
=12×3=32
(d)limx0(tanxsinx)x3(tan4x+tan3xsinx+tan2xsin2+sin3xtan x+sin4x)x4sin3xx3 tan2xx2
=12×5=52

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon