The correct option is D c,a,d,b
Consider, limx→0(tanx−sinx)x3
limx→0sinx(1−cosx)x3cosx=limx→0sinxx⋅(1−cosx)x2cosx
∵limx→0sinxx=1&limx→01−cosxx2=12
∴limx→0(tanx−sinx)x3=12
Using the above limit, we can evaluate the options:
(a) limx→0(tan2x−sin2x)(tan2x+sin2x)x6
=limx→0(tanx−sinx)x3(tanx+sinx)x(sin2+tan2x)x2
=12×(2)(2)=2
(b)limx→0(tan4x+sin4x)(sin2x+tan2x)(tanx+sinx)(tanx−sinx)x4×x2×x×x3×tan x5x5
=limx→0(tan4x+sin4x)x4(sin2x+tan2x)x2(tanx+sinx)x(tan x−sinx)x3
=2×2×2×12=4
(c)limx→0(tanx−sinx)(tan2x+sin2x+sinx tanx)x5sin4xx4
=limx→0(tanx−sinx)x3(tan2x+sin2x+sinx tanx)x2
=12×3=32
(d)limx→0(tanx−sinx)x3(tan4x+tan3xsinx+tan2xsin2+sin3xtan x+sin4x)x4sin3xx3 tan2xx2
=12×5=52