Arrange the following limits in the ascending order a)limx→0(1x+2x+4x3)1x
b)limx→0(2x+3x+8x+27x4)1x
c)limx→0⎡⎣1x+(12)x+(14)x3⎤⎦1x
d)limx→0⎡⎣(12)x+(13)x+(18)x+(127)x4⎤⎦1x
A
d,c,a,b
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
d,a,b,c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a,c,b,d
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a,b,c,d
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A d,c,a,b We know that limx→0(ax1+ax2+ax3+.....+axnn)1n=(a1a2a3.....an)1/n (a) limx→0(1x+2x+4x3)1x =(1.2.4)1/3=(8)1/3=2 b) limx→0(2x+3x+8x+27x4)1x =(2.3.8.27)1/4=(1296)1/4=6 c)limx→0[1x+(12)x+(14)x3]1x =(1.12.14)1/3=(18)1/3=12 d)limx→0[(12)x+(13)x+(18)x+(127)x4]1x
=(12.1318127)1/4=(11296)1/4=16 Hence, ascending order of limits is d,c,a,b