CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Arun is constructing a rectangle REMO where RE = 4 cm and RM = 5 cm. The steps for the construction is as follows:

(1) Draw a line segment RE of length 4 cm.
(2) Construct 90° at the points R and E. Extend the lines.
(3) Keeping R as the centre and a radius of 5cm, construct an arc cutting on the line generated from the point E.
(4) Mark the intersecting point to be M.
What is the next step?

A
Measure the length of the side EM for the construction of the side RO.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
Join O and M. The rectangle REMO is hence constructed.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
None of the above.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Keeping R as the centre, cut an arc of radius 3 cm on the generated from the point R.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A Measure the length of the side EM for the construction of the side RO.
The steps of construction will be as follows:

(1) Draw a line segment RE of length 4 cm.

(2) Construct 90° at the points R and E. Extend the lines.

(3) Keeping R as the centre and a radius of 5cm, construct an arc cutting on the line generated from the point E.

(4) Mark the intersecting point to be M.

(5) Measure the length of the side EM for the construction of the side RO.

(6) Keeping R as the centre, cut an arc of radius 3 cm on the generated from the point R.

(7)Join O and M. The rectangle REMO is hence constructed.

The rectangle will be as follows.

So, 'measure the length of the side EM for the construction of the side RO' will be the next step.

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Construction of Special Quadrilaterals - Square
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon