The correct option is
A A is true, R is true and R is correct explanation of A.
Let I=cos2A+cos2B+cos2C
As A+B+C=180∘
⇒2C=360∘−2(A+B), then
I=2cos(A+B)cos(A−B)+cos(360∘−2(A+B))
=2cos(A+B)cos(A−B)+cos(2(A+B))
=2cos(A+B)cos(A−B)+2cos2(A+B)−1
=2cos(A+B)(cos(A−B)+cos(A+B))−1
Again using A+B+C=180∘⇒A+B=180∘−C and the formula of cosc+cosd=2cosc+d2⋅cosc−d2
We get
I=2cos(180∘−C)(2cosAcosB)−1.......(1)
=−4cosAcosBcosC−1
Hence, reason is correct.
Assertion:
As cos2x=2cos2x−1⇒cos2x=cos2x+12
We get
J=cos2A+cos2B+cos2C
=12(cos2A+1+cos2B+1+cos2C+1)
=12(cos2A+cos2B+cos2C+3)
J=12(−4cosAcosBcosC−1+3) (using (1))
J=1−2cosAcosBcosC
Hence, assertion is also correct and reason is the correct explanation for assertion.