The correct option is C A is true but R is false
limx→∞(x2+5x+3x2+x+2)x=limx→∞(x2+5x+3x2+x+2+1−1)x=limx→∞(1+4x+1x2+x+2)x=limx→∞(1+4x+1x2+x+2)x=elimx→∞4x+1x2+x+2×x=e4
Let,
L=limx→∞(1+x)1x⇒L=e limx→∞1xlog(1+x)⇒L=e limx→∞1xlog(1+x)∞∞ form so, using L'Hospital Rule⇒L=e limx→∞11+x=e0=1