Assertion :Consider I=∫π4−π4dx1−sinx =0 Reason: ∫a−af(x)dx=0, wherever f(x) is an odd function.
I=∫π/4−π/4dx1−sinx
Here,
f(x)=11−sinx
f(x) is
neither even nor odd.
Now, I=∫π/4−π/4dx1−sinx
=∫π/4−π/4dx1−2tan(x/2)1+tan2(x/2)
=∫π/4−π/4sec2(x/2)dx1+tan2(x/2)−2tan(x/2)
I=∫π/4−π/4sec2(x/2)dx(tan(x/2)−1)2
Put tan(x/2)=t
⇒sec2x/2dx=2dt
I=∫tanπ/8−tanπ/82dt(t−1)2
I=−2[1(t−1)]tanπ/8−tanπ/8
⇒I≠0
Hence,
assertion is not true.
Reason is
correct statement