The correct option is
D Assertion is incorrect but Reason is correct
We know that,
1+a31b31=(1+a1b1)(1+a21b21−a1b1)
So the determinant can be expressed as,
Δ=∣∣
∣
∣
∣
∣
∣∣(1+a1b1)(1+a21b21−a1b1)1+a1b1(1+a1b2)(1+a21b22−a1b2)1+a1b2(1+a1b3)(1+a21b23−a1b3)1+a1b3(1+a2b1)(1+a22b21−a2b1)1+a2b1(1+a2b2)(1+a22b22−a2b2)1+a2b2(1+a2b3)(1+a22b23−a2b3)1+a2b3(1+a3b1)(1+a23b21−a3b1)1+a3b1(1+a3b2)(1+a22b22−a3b2)1+a3b2(1+a3b3)(1+a23b23−a3b3)1+a3b3∣∣
∣
∣
∣
∣
∣∣Δ=∣∣
∣
∣∣(1+a21b21−a1b1)(1+a21b22−a1b2)(1+a21b23−a1b3)(1+a22b21−a2b1)(1+a22b22−a2b2)(1+a22b23−a2b3)(1+a23b21−a3b1)(1+a22b22−a3b2)(1+a23b23−a3b3)∣∣
∣
∣∣
The determinant can be split as product of two determinants as under,
Δ=∣∣
∣
∣∣1a21−a11a22−a21a23−a3∣∣
∣
∣∣×∣∣
∣
∣∣111b21b22b23b1b2b3∣∣
∣
∣∣
∴ Reason is correct.
However, nothing can be said about Δ is equal to zero as one of the two determinants, in that case, will have to be zero.
That will be possible only when a pair of a1,a2,a3 are equal or a pair of b1,b2,b3 are equal.
Hence, Assertion is not always true.