Assertion :∫1√x2+2x+10dx=sinh−1x+13+c
Reason : If a>0, b2−4ac<0, then ∫dx√ax2+bx+c=1√asinh−1(2ax+b√4ac−b2)+k
A=∫1√x2+2x+10dx=∫1√(x+1)2+2dx
=log∣(x+1)+√(x+1)2+32∣
=sinh−1(x+13)+c
R:∫dx√ax2+bx+c=1√alog∣(2ax+b)+√(2ax+b)2+(√4ac−b2)2∣
=1√asinh−1(2ax+b√4ac−b2)
A, R true and R explains A.