Assertion :sin3x+sin3(x+2π3)+sin3(x+4π3)=3sinxsin(x+2π3)⋅sin(x+4π3) Reason: If a+b+c=0, then a3+b3+c3=3abc
Assertion is true as
sin3x+sin3(x+2π3)+sin3(x+4π3)sin3A=3sinA−sin3A4=14(3sinx−sin3x+3sin(x+2π3)−sin(3x+2π)+3sin(x+4π3)−sin(3x+4π))=14(3sinx−sin3x+3sin(x+120)−sin3x+3sin(x+240)−sin3x)=14(3sinx−3sin3x+3(sin(x+120)+sin(x+240)))=14(3sinx−3sin3x+3(sin(180−(60−x))+sin(180+(60+x))))=14(3sinx−3sin3x+3(sin(60−x)−sin(60+x)))=14(3sinx−3sin3x+3(−2cos60sinx))=14(3sinx−3sin3x+3(−212sinx))=−3sin3x43sinxsin(x+2π3)sin(x+4π3)=3sinxsin(x+120)sin(x+240)=−3sinxsin(60−x)sin(60+x)=−3sinx(sin260cos2x−cos260sin2x)=−3sinx(34cos2x−14sin2x)=−3sin3x4
Reason is true as for
sinx+sin(x+2π3)+sin(x+4π3)=sinx+2sin(x+π)cos(−π3)=sinx−2sinxcos60=0
we get
(sinx)3+(sin(x+2π3))3+sin(x+4π3)3=3sinx.sin(x+2π3).sin(x+4π3)