Assertion :For any real value of θ≠(2n+1)π or (2n+1)π/2, n∈I, the value of the expression y=cos2θ−1cos2θ+cosθ is y≤0 or y≥2 (either less than or equal to zero or greater than or equal to two)
Because Reason: secθ∈(−∞,−1]∪[1,∞) for all real values of θ.
y=cos2θ−1cos2θ+cosθ
=−sin2θcosθ(cosθ+1)
=−sin2θ2cosθ.cos2θ2
=−4sin2θ2.cos2θ22cosθ.cos2θ2
=−2sin2θ2cosθ
=−1−cosθcosθ
=−[secθ−1]
=1−secθ.
Or
y=1−secθ
secθ=1−y
Now secθϵ(−∞,−1]∪[1,∞)
Or
secθ<−1 and secθ>1
Or
1−y<−1 and 1−y>1
Or
y>2 and y<0.