Assertion :If 2cosθ+sinθ=1(θ≠π2), then the value of 7cosθ+6sinθ is 2. Reason: If cos2θ−sinθ=12,0<θ<π2, then sinθ+cos6θ=0.
Statement 1: is true as
2cosθ+sinθ=1⇒2(1+tan2(θ2))1+tan2(θ2)+2tan(θ2)1+tan2(θ2)=1⇒3tan2(θ2)−2tan(θ2)−1=0⇒tan(θ2)=−13θ≠π2
Now,
7cosθ+6sinθ=7(1−tan2(θ2))1+tan2(θ2)+6×2tan(θ2)1+tan2(θ2)=7−7tan2(θ2)+12tan(θ2)1+tan2(θ2)=7−7×19+12(−13)1+19=2
Statement 2: is also true
cos2θ−sinθ=12⇒2(1−2sin2θ)−sinθ=1⇒4sin2θ+2sinθ−1=0⇒sinθ=−2±√4+168=−1±√54⇒sinθ=√5−14⇒θ=18o⇒cos6θ=cos108o=cos(90o+18o)=−sin18o
Therefore, sinθ+cos6θ=0
Hence, both statements is correct but statement 2
is not correct explanation of statement 1