Assertion :If 2sin2x−cos2x=1,x≠(2n+1)π2, n is an integer, then sin2x+cos2x is equal to 15. Reason: sin2x+cos2x=1+2tanx−tan2x1+tan2x
U\sin g sin2x=2tanx1+tan2x and
cos2x=1−tan2x1+tan2x
We get sin2x+cos2x=2tanx+1−tan2x1+tan2x
Hence reason is true
Now,
2sin2x−cos2x=1⇒4tanx−1+tan2x1+tan2x=1⇒4tanx−1+tan2x=1+tan2x⇒tanx=12
Therefore
sin2x+cos2x=2tanx+1−tan2x1+tan2x=1+1−141+14=75
Hence assertion is false