Assertion :If 2sinθ2=√1+sinθ+√1−sinθ then θ2 lies between 2nπ+π4 and 2nπ+3π4. Reason: If θ2 runs from π4 to 3π4, then sinθ2>0.
Reason:
For π4≤θ2≤3π4 lies in 1st
and 2nd quadrant and sin is positive in first two quadrant.
Therefore, sinθ2>0
Assertion:√1+sinθ+√1−sinθ=
⎷(sinθ2+cosθ2)2+
⎷(sinθ2−cosθ2)2
=sinθ2+cosθ2+sinθ2−cosθ2 =2sinθ2 Only when sinθ2>cosθ2⇒2nπ+π4≤θ2≤2nπ+3π4