The correct option is
A Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
cos(β−r)+cos(r−α)+cos(α+β)=−3/2
⇒cosβcosr+sinβsinr+cosrcosα+sinr+sinα+cosαcosβ+sinαsinβ=−3/2.
⇒2cosβcosr+2sinβsinr+2cosrcosα+2sinαrsinα+cosαcosβ+2sinαsinβ=−3
⇒(cosα+cosβ+cosr)2−cos2α−cos2β−cos2r+(sinα+sinβ+sinr)2−sin2−sin2α−sin2β−sin2r=−3
⇒(cosα+cosβ)2−cos2α−cos2β−cos2r+(sinα+sinβ+sinr)2−sin2α−sin2β−sin2r=−3
⇒(cosα+cosβ)2+(sinα+sinβ+sinr)2−(cos2α+sin2α)−(cos2β+sin2β)−(cos2r+sin2r)=−3
⇒(cosα+cosβ+cosr)2+(sinα+sinβ+sinr)2−1−1−1+3=0
⇒(cosα+cosβ+cosr)2+(sinα+sinβ+sinr)2=0
∴cosα+cosβ+cosr=0andsinα+sinβ+sinr=0
thre both co statement ie A and B are true.