The correct option is
C Assertion is TRUE and reason is FALSE
Assertion: xtan(θ+α)=ytan(θ+β)=ztan(θ+γ)
⇒xy=tan(θ+α)tan(θ+β)=sin(θ+α)cos(θ+β)cos(θ+α)sin(θ+β)
Appyling componendo and dividendo, we get
x+yx−y=sin(θ+α)cos(θ+β)+cos(θ+α)sin(θ+β)sin(θ+α)cos(θ+β)−cos(θ+α)sin(θ+β)
=sin(2θ+α+β)sin(α−β)
∴ Clearly reason is incorrect
Now x+yx−ysin(α−β)=sin(2θ+α+β)
⇒x+yx−ysin(α−β)sin(α−β)=sin(2θ+α+β)sin(α−β)
⇒x+yx−ysin2(α−β)=sin(2θ+α+β)sin(α−β)
=12[cos(2θ+2β)−cos(2θ+2α)]
Similarly ⇒y+zy−zsin2(β−γ)=12[cos(2θ+2γ)−cos(2θ+2β)]
and ⇒z+xz−xsin2(γ−α)=12[cos(2θ+2α)−cos(2θ+2γ)]
∴∑x+yx−ysin2(α−β)=0
Hence assertion is correct.